

Alpha-1 Antitrypsin Deficiency

Alpha-1 antitrypsin

- 52kDa glycosylated protein
- Synthesized (>95%) primarily in the liver
- Also produced by some immune cells such as macrophages, monocytes,
- Archetypal serine protease inhibitor (SERPIN)
- Key anti-inflammatory and immunomodulatory protein
- Regulates the effects of numerous inflammatory cytokines, including IL-8 and TNF-α

Alpha-1 antitrypsin deficiency

- Autosomal co-dominant genetic disease
- In most cases, pathology is due to protein misfolding, rather than insufficient protein production
- Misfolded protein fails to escape the endoplasmic reticulum of hepatocytes, polymerizes and accumulates in the liver, leading to a gain-of-function inflammatory burden
- Since the AAT produced by the liver does not reach the circulation, this also results in a loss-of-function absence of the AAT protective screen at the lung
- Although any misfolded AAT that manages to escape the liver does retain some antiprotease and antiinflammatory properties, it is generally less effective than correctly-folded protein

Genetics

- SERPINA1 gene on chromosome 14 encodes AAT
- Individuals with two copies of the wild-type M allele (Pi*MM, or simply "MM") have normal circulating levels of
- Key pathological mutation is a single amino acid substitution (Glu342Lys) in SERPINA1, which leads to production of misfolded Z-type AAT
- Over 95% of severe AATD (both in terms of circulating AAT levels and severity of disease) is due to homozygosity for the Z allele (Pi*ZZ, or "ZZ")
- Approximately 1 in 25 people of European descent carry a Z allele
- AATD is an autosomal co-dominant disorder, meaning that each allele contributes to the phenotype
- Numerous other SERPINA1 mutations exist (S, F, I, Pittsburgh, Bolton, etc) which are generally less severe clinically than Z
- Persons with one Z allele and one M allele (Pi*MZ) have an intermediate deficiency of the protein
 - This is the most common form of AATD in Europe
- Those who have a Z allele combined with a less severe mutated allele are known as compound heterozygotes
- Mutations that lead to a complete absence of AAT protein are termed "null" mutations

Clinical presentation

- Classic presentation in children is neonatal jaundice
 - AATD is one of the most common indications for neonatal liver transplant, which is essentially
- Typical presentation in adults involves early onset bilateral panacinar emphysema with a basal predominance in an individual with a modest smoking history and a family history of COPD
- However, these factors are not always present, and in many cases AATD-associated emphysema may be radiologically indistinguishable from nonhereditary emphysema
- Spirometry shows obstructive pattern, decreased DLCO
- Extrapulmonary manifestations include cirrhosis, HCC, panniculitis, and serositis
- Also associated with AAA, gallstones, and, in Pi*MZs, NAFLD and ANCA-positive vasculitis

Protease-antiprotease hypothesis

- In broad terms, inspiration is an active process (muscles do work), whereas expiration is a passive process, governed by the elastic recoil of the lungs and chest wall
- Elastin gives the lungs their elastic quality
- Elastin is broken down and degraded by NE, an omnivorous protease released by activated or disintegrating neutrophils in response to pulmonary infection or acute airway inflammation
- AAT serves as the regulator of NE

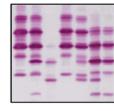
Unaffected

lungs from damag

AAT produced in

- In AATD, airway NE activity goes unchecked, with subsequent loss of lung tissue and development of early-onset
- This risk is amplified in smokers, since cigarette smoke inactivates AAT via oxidation of methionine residues
- Pathogenesis of AATD-associated COPD not fully explained by protease-antiprotease theory however there are substantial contributions from inflammation and recurrent exacerbations

Unaffected No increased risk of lung disease in


Increased risk of June disease

Who should be tested for AATD?

- Despite being the only recognised genetic cause of COPD, AATD is habitually underdiagnosed
- · Average time from first presentation to diagnosis in the absence of targeted screening programmes is 7 years
- WHO recommends targeted screening in any patient with:

 - Non-responsive asthma
 - Cryptogenic liver disease
 - First degree relative with AATD Panniculitis

MM MS ZZ MM MZ SZ SS

Screening and diagnosis

- Serum AAT level can be a useful screening test for Pi*ZZ
 - However, this approach is less sensitive for milder forms of AATD
 - · Furthermore, since AAT is an acute-phase protein, it s production will increase during infection, illness or physiological stress
 - Therefore, AAT levels should only be sent for patients who are at clinical baseline
- Diagnosis is by immunofixation of serum glycoforms via isoelectric focusing gel electrophoresis (phenotyping, see above) or by genotyping
- In cases where AAT protein phenotyping provides an equivocal result, or where a rare mutation is suspected, confirmatory genotyping should be sought.

Risk of developing COPD

- Pi*ZZ patients at significantly increased risk of developing severe lung disease as early as the 4th and 5th decades of life
 - This risk is much higher in smokers
- Risk of lung disease is 5-10 times higher in Pi*MZ patients who smoke compared to Pi*MM patients who smoke
 - No increased risk of lung disease in Pi*MZs who don't smoke N.B.
- Similarly, Pi*SZ patients who don't smoke, or who quit smoking before they develop obstructive spirometry, are not at increased risk

- Most effective and important intervention is smoking cessation
- For AATD patients with lung disease, pharmacological management and indication for vaccinations is the same as for Pi*MM COPD
- In those requiring transplant, particular attention to liver status, and vigilance for post-operative serositis, is recommended
- Only disease-specific treatment is augmentation therapy with AAT purified from the plasma of Pi*MM donors
 - Typically given IV once per week at a dose of 60mg/kg
 - Shown to slow progression of emphysema as measured by CT lung density
 - Group most likely to benefit have FEV1 30-49% pred
 - Definitive effect on mortality not yet shown

Dr. Oliver McElvanev, Beaumont Hospital