10.05 The role of Therapeutic Drug Monitoring (TDM) in the management of M. tuberculosis infections John Murray¹, Lorraine Dolan¹, Joseph Keane^{1,2}, Anne Marie McLaughlin^{1,2} ¹Dept Respiratory Medicine, St James's Hospital ²School of Medicine, Trinity College Dublin **Background:** Therapeutic Drug Monitoring (TDM) is an often underutilised tool in the treatment of TB. TDM can identify underdosing which is an easily correctible cause of treatment failure. The ATS/CDC advise considering its use whenever there is a poor response to treatment¹ <u>Methods:</u> We examined patient records who had received TB treatment in St James's Hospital in the past two years. Eight patients demonstrating the utility of TDM were selected. All had low levels of one or more drugs in their regimens and all had their doses increased. A detailed chart review of these patients was performed, evaluating disease site, drug resistance, patient weight, initial dosing, serum drug levels and subsequent adjustments. **Results:** The most common drug requiring increase after TDM was rifampicin (5 cases) followed by Isoniazid (3 cases) and Moxifloxacin (2 cases). Prior to TDM, all patients had been appropriately dosed by WHO guidelines.² <u>Conclusion:</u> TDM is a valuable tool in maximising treatment outcomes in of TB. It should be considered in any case that a poor response to treatment exists, even if dosing has been in accordance with WHO guidelines. **Keywords:** Therapeutic Drug Monitoring; TB **Disclosures:** Nil to declare ¹ Nahid P et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis [Internet]. Clinical Infectious Diseases Oxford University Press (OUP); 2016. p. e147–e195 ² WHO operational handbook on tuberculosis Module 4: Treatment – drug-susceptible tuberculosis treatment. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. | | Site of disease | Resistance | Wt | Initial rx | Levels
checked when | Results
(Mg/L) | New Rx | Dosing in accordance with guidelines | |---|------------------------|--|-------|--|------------------------|---------------------------------------|--|--------------------------------------| | Α | Pulmonary +
Pleural | Mono (Low level isoniazid) | 53.35 | EMB 800mg
RIF 600mg
INH 450mg
PZA 1800
MXF 400 | Week 4 | RIF peak
2.7 (8-
24) | Added
300mg
RIF (900
total) | Yes | | В | Pulmonary | - | 67.5 | RIF 600
INH 300 | Week 8 | RIF 6.0
(8-24) | Added
300mg
RIF
(900
total) | Yes | | С | Pulmonary | MDR (isoniazid,
ethambutol
streptomycin) | 73 | RIF 600
PZA 2000
MXF 400 | Week 8 | RIF 6.9
(8-24)
MXF 2.4
(3-5) | Increase
RIF to
900,
Increase
MXF to
600 | Yes | | D | Ocular | - | 79.1 | RIF 720
INH 300
PZA 1800
EMB 1300 | Week 12 | INH 1.4
(3-5) | Increased
INH to
450 | Yes | | Е | Pulmonary | - | 72.75 | RIF 1020
INH 300
PZA 1800
EMB 1300 | Week 5 | INH 1.9
(3-5) | Increased
INH to
450 | Yes | | F | Pulmonary | - | 60.5 | RIF 600
INH 300 | Week 10 | INH 2.7
(3-5) | Increased
INH to
450 | Yes | | G | Mediastinal LN | Mono -
Pyrazinamide | 60.6 | RIF 600
INH 300 | Week 24 | RIF 4.0
(8-24) | Increased
RIF to
900 | Yes | | Н | Pulmonary +
Pleural | Mono - INH (high
levels of
resitance) | 64 | RIF 600
PZA 2g
MXF 400mg | Week 7 | RIF 7.8
MXF 2.0
(3-5) | Increased
RIF to
900
Increased
MXF to
600 | Yes |